
electronic reprint
Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Editor: W.Steurer

Equivalence of superspace groups

Sander van Smaalen, Branton J. Campbell and Harold T. Stokes

Acta Cryst. (2013). A69, 75–90

Copyright c© International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that
this cover page is retained. Republication of this article or its storage in electronic databases other than as
specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Crystallographica Section A: Foundations of Crystallography covers theoretical and
fundamental aspects of the structure of matter. The journal is the prime forum for research
in diffraction physics and the theory of crystallographic structure determination by diffrac-
tion methods using X-rays, neutrons and electrons. The structures include periodic and
aperiodic crystals, and non-periodic disordered materials, and the corresponding Bragg,
satellite and diffuse scattering, thermal motion and symmetry aspects. Spatial resolutions
range from the subatomic domain in charge-density studies to nanodimensional imper-
fections such as dislocations and twin walls. The chemistry encompasses metals, alloys,
and inorganic, organic and biological materials. Structure prediction and properties such
as the theory of phase transformations are also covered.

Crystallography Journals Online is available from journals.iucr.org

Acta Cryst. (2013). A69, 75–90 Sander van Smaalen et al. · Equivalence of superspace groups

http://journals.iucr.org/a/
http://dx.doi.org/10.1107/S0108767312041657
http://journals.iucr.org/services/authorrights.html
http://journals.iucr.org/a/
http://journals.iucr.org
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312041657&domain=pdf&date_stamp=2012-11-14


Acta Cryst. (2013). A69, 75–90 doi:10.1107/S0108767312041657 75

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 2 July 2012

Accepted 5 October 2012

# 2013 International Union of Crystallography

Printed in Singapore – all rights reserved

Equivalence of superspace groups

Sander van Smaalen,a* Branton J. Campbellb and Harold T. Stokesb

aLaboratory of Crystallography, University of Bayreuth, Bayreuth, Germany, and bDepartment of

Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA. Correspondence

e-mail: smash@uni-bayreuth.de

An algorithm is presented which determines the equivalence of two settings of a

(3 + d)-dimensional superspace group (d = 1, 2, 3). The algorithm has been

implemented as a web tool findssg on SSGð3þ dÞD, providing the

transformation of any user-given superspace group to the standard setting of

this superspace group in SSGð3þ dÞD. It is shown how the standard setting of a

superspace group can be directly obtained by an appropriate transformation of

the external-space lattice vectors (the basic structure unit cell) and a

transformation of the internal-space lattice vectors (new modulation wavevec-

tors are linear combinations of old modulation wavevectors plus a three-

dimensional reciprocal-lattice vector). The need for non-standard settings in

some cases and the desirability of employing standard settings of superspace

groups in other cases are illustrated by an analysis of the symmetries of a series

of compounds, comparing published and standard settings and the transforma-

tions between them. A compilation is provided of standard settings of

compounds with two- and three-dimensional modulations. The problem of

settings of superspace groups is discussed for incommensurate composite

crystals and for chiral superspace groups.

1. Introduction

Symmetry is one of the most important concepts in the solid-

state sciences. Knowledge of the symmetry of a crystalline

compound allows the understanding of many aspects of its

physical behavior, including degeneracies, the possibility of

possessing non-linear properties and the anisotropy of the

response to external fields. A change in symmetry at different

temperatures, pressures or compositions is used as the key

parameter for characterizing phase transitions of a compound.

Symmetry is used for the description of phonon and electron

bands and thus allows the interpretation of spectroscopic

measurements on materials. Not least, symmetry restrictions

on structural parameters are essential for successful refine-

ments of crystal structures.

Theoretically, the classification of symmetry is solved. The

230 space groups give the 230 possibilities for the symmetry of

a periodic structure (Hahn, 2002). Aperiodic crystals lack

three-dimensional (3D) translational symmetry (Janssen et al.,

2006, 2007; van Smaalen, 2007). The structures of incom-

mensurately modulated crystals are characterized by a three-

dimensional lattice for the average structure together with d

modulation waves (d ¼ 1; 2; . . .) describing deviations from

the lattice-periodic structure. Their symmetries are given by

ð3 þ dÞ-dimensional [ð3 þ dÞD] superspace groups (de Wolff et

al., 1981). The latter are space groups of ð3 þ dÞD space, which

have to obey particular conditions in order to qualify as

symmetry groups for the symmetries of aperiodic crystals.

Incommensurate composite crystals are described by the same

superspace groups as modulated crystals (van Smaalen, 2007),

while quasicrystals require a slightly modified treatment

(Janssen et al., 2007; Steurer & Deloudi, 2009).

We have recently generated a complete list of superspace

groups and their Bravais classes of dimensions ð3 þ dÞ for d =

1, 2 and 3 (Stokes et al., 2011a). The list agrees with previous

information on ð3 þ 1ÞD superspace groups (Janssen et al.,

2006), but it contains numerous corrections for superspace

groups of dimensions d = 2 and 3 (Yamamoto, 2005) and even

some corrections to the Bravais classes of dimensions 2 and 3

(Janssen et al., 2006). The results of Stokes et al. (2011a) are

compiled in the form of the web-based data repository

SSGð3þ dÞD (Stokes et al., 2011b). SSGð3þ dÞD provides

several types of information for each superspace group,

including the Bravais class, the list of symmetry operators and

reflection conditions in both standard and supercentered

settings.

It is noticed that Stokes et al. (2011a) have defined the

standard settings and their symbols by a set of judiciously

chosen rules, which, however, include subjective choices. The

standard setting thus is defined as the setting included in the

list of superspace groups on SSGð3þ dÞD.

The use of alternate settings of space groups is a well

known feature for three-dimensional space groups. Volume

A of the International Tables for Crystallography (Hahn, 2002)
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provides several settings for monoclinic space groups, thus

showing, for example, that C2=c, A2=n and I2=a denote

different settings of space group No. 15.1 Alternate settings of

three-dimensional space groups arise owing to different

choices of the unit cell. Trivial transformations include a

simple relabeling of the axes a, b and c. For monoclinic space

groups this implies the freedom to select the unique axis as

a ¼ a1, b ¼ a2 or c ¼ a3. For the example of space group No.

15 the transformation

a01 ¼ a1 þ a3; a02 ¼ a2; a03 ¼ �a1 ð1Þ

takes the setting C2=c into A2=n, while both settings refer to a

unique axis a2. Applying the transformation of equation (1) to

the setting A2=n results in the third setting I2=a. Other

notorious pairs of equivalent settings include the I and F

settings for space groups based on the I-centered tetragonal

lattice, primitive and centered hexagonal settings as well as

obverse versus reverse settings for rhombohedral space

groups, and the H-centered setting as an alternative to the

primitive setting for trigonal space groups (Hahn, 2002).

Different diffraction experiments independently lead to any

of the possible settings of the space group. It is then of high

practical importance to find the transformation between these

settings or to establish that two different space groups have

indeed been obtained. The latter situation implies different

compounds or different phases of one compound, while

different settings of one space group imply that the same

compound has been studied. In other experiments it is

important that a previously defined orientation of a crystalline

material is re-established, thus requiring the relation to be

found between the newly found setting and a standard setting.

As a start, superspace groups for incommensurately mod-

ulated compounds and incommensurate composite crystals

exhibit the same variation of settings as three-dimensional

space groups do, since ð3 þ dÞD superspace groups are based

on a basic structure lattice and space group in three-

dimensional space. In addition, superspace groups may appear

in many more different settings, owing to the ambiguity in the

choice of the modulation wavevectors characterizing the

structure and the diffraction pattern. The equivalence of

different settings of a superspace group is not always obvious.

In some cases, establishing an actual equivalence can be a

computationally prohibitive task unless appropriate algo-

rithms are used. Here we present such an algorithm, which was

used but not described in detail in our previous publication

Stokes et al. (2011a). It is available within SSGð3þ dÞD as a tool

with which to determine the transformation between a user-

provided setting of a ð3 þ dÞD superspace group and the

standard setting defined by SSGð3þ dÞD (Stokes et al., 2011b).

It thus can be used to establish or disprove the equivalence of

settings.

Coordinate transformations between different settings of

three-dimensional space groups are discussed in Volume A of

International Tables for Crystallography (Hahn, 2002). For

ð3 þ 1ÞD superspace groups, typical transformations are

presented in van Smaalen (2007). The possibility to combine

two modulation wavevectors into an equivalent but different

set of two wavevectors leads to new types of transformations

for d = 2 and 3.

One goal of this paper is to present an overview of typical

coordinate transformations that may occur between settings of

superspace groups. Particular attention is given to the relation

between the formal description in ð3 þ dÞD space, as given on

SSGð3þ dÞD (Stokes et al., 2011a), and an experimentally

related description in terms of a rotation and an origin shift in

three dimensions (van Smaalen, 2007). Where available, we

use substances published in the literature to illustrate impor-

tant transformation types.

2. Equivalence of superspace groups

2.1. Definitions

The following definitions are used by Stokes et al. (2011a),

van Smaalen (2007) and Janssen et al. (1995). A d-dimen-

sionally modulated structure is characterized by d rationally

independent modulation wavevectors qj with components

compiled in a d� 3 matrix � according to

qj ¼ �j1a
�
1 þ �j2a

�
2 þ �j3a

�
3 : ð2Þ

For an aperiodic structure at least one component in each

row of � is an irrational number. The reciprocal vectors

fa�1; a�2; a�3; q1; . . . ; qdg in physical space correspond to the

reciprocal basis vectors fa�s1; . . . ; a�s3þdg in superspace. The

basis vectors of the direct lattice in superspace are

fas1; . . . ; as3þdg and the coordinates of a point in superspace

are ðxs1; . . . ; xs3þdÞ.
Note that the SSGð3þ dÞD data repository, and also the web-

based findssg and transformssg tools described herein,

presently use the fx; y; z; tg notation to indicate superspace

coordinates, though the same notation is also commonly used

to indicate physical- and internal-space coordinates.

An operator g of a ð3 þ dÞD superspace group G consists of

a rotation RsðgÞ and a translation vsðgÞ given in matrix form as

RsðgÞ ¼
�
R 0

M "

�
; vsðgÞ ¼

�
v3

vd

�
; ð3Þ

where R is a 3 � 3 integer matrix and v3 is a three-dimensional

column vector, together defining the operator fRjv3g in

physical space. " is a d� d integer matrix, and detðRÞ ¼
detð"Þ ¼ �1. The d� 3 integer matrix M is defined as

[equation (2)]

M ¼ �R3 � "�: ð4Þ

M has nonzero components only in the case that at least one of

the modulation wavevectors incorporates nonzero rational

components. Following Stokes et al. (2011a), each operator g

can be written as an augmented ð4 þ dÞ � ð4 þ dÞ matrix
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AðgÞ ¼
�
Rs vs
0 1

�
¼

R 0 v3

M " vd
0 0 1

0
@

1
A; ð5Þ

that simultaneously treats the point and translational parts of

the operation. The action of operator g on a point in super-

space then is given by the matrix product

x0s1
..
.

x0s3þd

1

0
BBB@

1
CCCA ¼ AðgÞ

xs1

..

.

xs3þd

1

0
BBB@

1
CCCA: ð6Þ

In superspace a coordinate transformation can be accom-

plished by the augmented affine transformation matrix

S ¼
 
Ss Sv
0 1

!
¼

SR 0 Sv3

SM S" Svd
0 0 1

0
@

1
A: ð7Þ

The components of SR, SM and S" are required to be integers.

Also, detðSRÞ ¼ 1 and detðS"Þ ¼ �1. The transformation S can

be interpreted as a rotation Ss in superspace followed by a

change of origin Sv. The effect of this transformation in

physical space can be described in terms of a rotation of the

reciprocal basis and the choice of an alternate set of modu-

lation wavevectors, according to

a0�i ¼ P3

k¼1

SRika
�
k

�0 ¼ ðSM þ S"�ÞS�1
R : ð8Þ

Two ð3 þ dÞD superspace groups, G1 and G2, are equivalent if

a single transformation S can be found, such that for every

g2 2 G2,

Aðg1Þ ¼ SAðg2ÞS�1; ð9Þ
for some g1 2 G1. Note that these definitions imply that a

primitive setting is used for the superspace group, where all

lattice translations are represented by integers, even those

which are centering translations in a conventional setting

(Stokes et al., 2011a).

It is sufficient that the relation of equivalence [equation (9)]

is tested for corresponding pairs of non-translational genera-

tors from the two superspace groups; the generators of the

translation subgroup need not be considered. Furthermore, a

transformation of the type of equation (9) can only be found

between operators g1l and g2l if [equation (3)]

detðR1lÞ ¼ detðR2lÞ; traceðR1lÞ ¼ traceðR2lÞ;
detð"1lÞ ¼ detð"2lÞ; traceð"1lÞ ¼ traceð"2lÞ; ð10Þ

where g1l is the lth generator of G1 and g2l is the corresponding

generator of G2. The appropriate pairs of generators are

obtained by consideration of the basic structure space group

implied by the superspace group. Other, trivial properties that

need to be fulfilled for equivalence and that are easily tested

include the number of operators in the point group of the

superspace group, which must be equal for G1 and G2.

2.2. The algorithm determining equivalence

The goal of testing for equivalence of two superspace

groups is to find the augmented matrix S with which the

operators of G2 are transformed into corresponding operators

of G1, or to establish that a matrix S that solves equation (9)

simultaneously for all pairs of generators does not exist.

Equation (9) is quadratic in S but can be recast in linear form

as SAðg2Þ ¼ Aðg1ÞS. Given that a pairing has been established

for the ngen generators of G1 and G2, this results in ð3 þ dÞ2
ngen

equations for ð3 þ dÞ2 variables Ssik,P3þd

j¼1

SsijRs
2l
jk � Rs

1l
ij Ssjk ¼ 0; ð11Þ

and ð3 þ dÞngen equations for additional ð3 þ dÞ variables Svi,

Svi �
P3þd

j¼1

Rs
1l
ij Svj ¼ vs

1l
i �P3þd

j¼1

Ssijvs
2l
j ðmod 1Þ: ð12Þ

The translational parts of the operators g1l and g2l are only

known up to a lattice translation, which is taken into account

by the mod 1 in equation (12).

Employing the special structure of S [equation (7)], the

variables Ssik can be ordered in a column vector as

~SSs ¼
~SSM
~SSR
~SS"

0
B@

1
CA; ð13Þ

where, for example, ~SSM is obtained by juxtaposition of the

columns of SM into a single column matrix. This procedure

eliminates the 3d variables that are zero according to

equation (7) and results in ½ð3 þ dÞ2 � 3d�ngen equations in

½ð3 þ dÞ2 � 3d� variables ~SSsj,

Pð3þdÞ2�3d

j¼1

Bij
~SSsj ¼ 0: ð14Þ

The ½ð3 þ dÞ2 � 3d�ngen � ½ð3 þ dÞ2 � 3d� matrix Bij is

obtained by rearrangement of equation (11), followed by

linear row operations that bring it into row echelon form. In

this form, the first nonzero element in each row occurs in a

column where it is the only nonzero element. If Bij is such an

element, then Bkj ¼ 0 for all k 6¼ i and Biþk;jþm ¼ 0 for all

k> 0 and m< k. This equation relates the ‘dependent’ vari-

able ~SSsj to ‘independent’ variables according to

~SSsj ¼ �
Xð3þdÞ2�3d

k¼jþ1

Bik

Bij

~SSsk: ð15Þ

The number of independent equations is smaller than or equal

to ½ð3 þ dÞ2 � 3d�ngen. If the number of independent equations

is larger than ½ð3 þ dÞ2 � 3d�, a solution does not exist for ~SSs,
and the two superspace groups are shown to be inequivalent.

Alternatively, the number of independent equations can be

equal to ½ð3 þ dÞ2 � 3d�, then defining a unique solution for ~SSs.
Finally, the number of independent equations can be smaller

than ½ð3 þ dÞ2 � 3d�, resulting in more than one solution to

equation (15). Once values for the independent variables have

been chosen, equation (15) can be used to compute the

Acta Cryst. (2013). A69, 75–90 Sander van Smaalen et al. � Equivalence of superspace groups 77
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remaining variables of ~SSs and Ss. For each solution ~SSs of

equation (15), equation (12) may or may not provide a solu-

tion for the translational parts of the transformation.

The strategy for finding the transformation S is now as

follows. For each trial set of integers for the independent

variables ~SSsk, check that all dependent variables ~SSsj compute to

have integer values and that detðRÞ ¼ 1 and detð"Þ ¼ �1. If

not, discard the trial set. If so, use the values ~SSsj (both

dependent and independent) in equation (12) and explore

trial integer sets of variables Svi in search of a modulo 1

solution. If a solution is found, then equations (11) and (12)

are both satisfied and the two sets of superspace-group

operators, G1 and G2, represent distinct but equivalent

settings of the same superspace group. If no solution is found,

then we can assume that the groups are not equivalent,

provided that we have a robust algorithm that searches a

sufficiently wide range of trial values for each independent

variable as to guarantee a solution to equations (11) and (12)

provided one exists. The method of choosing these variable

exploration ranges is described in the supplementary mate-

rial.2

The number of variables, and therefore the computational

complexity of the search, increases with the dimension d of the

modulation. Furthermore, the goal of the proposed analysis is

to determine which superspace group in the SSGð3þ dÞD
tables a user-given superspace is equivalent to. Since the

number of superspace groups strongly increases with d, the

number of candidate equivalencies that need to be tested

increases dramatically with increasing dimension of the

superspace, easily reaching several hundreds of groups in the

worst case (orthorhombic symmetry). Thus we need an algo-

rithm for evaluating the possible equivalence of two super-

space groups that is not only robust but also efficient. The

efficiency of the algorithm boils down to finding the most

restrictive number of trial sets of integers for which equiva-

lence needs to be tested (see the supplementary material).

An algorithm based on these rules has been implemented in

the software SSGð3þ dÞD (Stokes et al., 2011a). For any user-

given set of superspace operators, the web tool findssg

determines the complete list of operators (modulo lattice

translations) of the superspace group that they generate, as

well as a minimal list of generators, identifies the equivalent

superspace group in the SSGð3þ dÞD tables and provides the

coordinate transformation S to the standard setting [equation

(7)].

3. Alternate settings of (3 + 1)-dimensional superspace
groups

3.1. The basic structure space group

An important reason for the occurrence of non-standard

settings of superspace groups is the common use of different

standard settings for superspace groups and three-dimensional

space groups. Structural analysis of modulated crystals often

proceeds by the initial determination from the main reflec-

tions of the periodic basic structure along with its three-

dimensional space group (the basic structure space group,

BSG). Subsequently, satellite reflections are considered and

modulation functions and the superspace group are deter-

mined. For other substances the incommensurate phase is the

result of a phase transition, so that the three-dimensional

space group of the unmodulated structure at ambient condi-

tions is known independently. This space group, or one of its

subgroups, is preserved as the BSG of the incommensurate

phase.3

In all these cases the BSG is specified before the symmetry

of the modulation is considered. It is then a matter of chance

that the superspace group thus obtained will or will not be in

its standard setting. These points can be illustrated by space

group No. 62 with standard setting Pnma (Hahn, 2002). In this

setting, TaSe0:36Te2 is modulated with � ¼ ð0; 0; �3Þ and

�3 ¼ 0:6398 [equation (2); van der Lee et al. (1994)], so that

the ð3 þ 1ÞD superspace-group symbol is Pnmað0; 0; �Þ000,

which is the standard setting for superspace group No. 62.1.9.1

in SSGð3þ dÞD.

Thiourea has a lattice-periodic structure with space group

Pnma at ambient conditions. Below Ti ¼ 202 K it develops an

incommensurate modulation with � ¼ ð0; �2; 0Þ in the Pnma

setting (Gao et al., 1988; Zuñiga et al., 1989). Combining the

BSG and modulation wavevector leads to the ð3 þ 1ÞD
superspace group Pnmað0; �; 0Þ000. SSGð3þ dÞD shows that

this is an alternate setting of superspace group No. 62.1.9.3,

for which the standard symbol is Pbnmð0; 0; �Þ000. The

augmented matrix S that transforms coordinates from the

original (unprimed) to the standard (primed) settings [equa-

tion (6)] is given in SSGð3þ dÞD as

S ¼

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBB@

1
CCCCA; S�1 ¼

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBB@

1
CCCCA:

ð16Þ
According to equation (8) the new basis vectors of the basic

structure are obtained as the upper-left 3 � 3 part of the

transpose of S�1. Inspection of equation (16) shows that the

basis vectors of the basic structure in the standard (primed)

setting Pbnmð0; 0; �Þ000 are obtained by a transformation

of the basis vectors in the original (unprimed) setting

Pnmað0; �; 0Þ000 as

a01 ¼ a3; a02 ¼ a1; a03 ¼ a2: ð17Þ
The fourth row of S shows that the modulation wavevector

remains the same, but its components with respect to the

transformed basic structure reciprocal basis vectors are

obtained by equation (8),
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�0 ¼ ½ð0; 0; 0Þ þ ð0; �2; 0Þ�
0 0 1

1 0 0

0 1 0

0
B@

1
CA

�1

¼ ð0; 0; �2Þ ¼ ð0; 0; �0
3Þ; ð18Þ

in accordance with the standard setting of superspace group

No. 62.1.9.3.

3.2. Choice of the modulation wavevector

A second source of variation of settings is the freedom in

the choice of the modulation wavevector. Given a modulation

with modulation wavevector q, any reciprocal vector

q0 ¼ n1a
�
1 þ n2a

�
2 þ n3a

�
3 � q; ð19Þ

where ni are integers is an appropriate choice for the modu-

lation wavevector. A common choice is to select q within the

first Brillouin zone of the basic structure, i.e. to choose the

shortest possible vector [equation (19)]. This choice does not

necessarily correspond to the standard setting of the super-

space group.

Transformations that change settings have been extensively

discussed in van Smaalen (2007). The principles are illustrated

by the symmetries of A2BX4 ferroelectric compounds with

the �-K2SO4 structure type and orthorhombic symmetry

according to space group No. 62 (Hahn, 2002). Basic structures

have been described in the standard setting Pnma for some

compounds, but the most frequently employed settings are

Pnam and Pmcn (Cummins, 1990).

K2SeO4 develops an incommensurate modulation below

Ti ¼ 129.5 K with � ¼ ð�1; 0; 0Þ in the Pnam setting (Yamada

& Ikeda, 1984). The incommensurate component is �1 ¼ 1
3 � �

with � equal to a small positive number that depends on

temperature. The superspace group is Pnamð�; 0; 0Þ0ss.
SSGð3þ dÞD shows that this is an alternate setting of super-

space group No. 62.1.9.6 Pmcnð0; 0; �Þs00, involving a trans-

formation of basis vectors and the selection of an alternative

modulation wavevector according to

a01 ¼ a3; a02 ¼ a2; a03 ¼ �a1; q0 ¼ a�1 þ q: ð20Þ
With respect to the transformed reciprocal basis vectors, the

components of the modulation wavevector are [equation (8)]

�0 ¼ ½ð1; 0; 0Þ þ ð�1; 0; 0Þ�
0 0 �1

0 1 0

1 0 0

0
B@

1
CA

¼ 0; 0;� 4

3
þ �

� �
: ð21Þ

The transformed modulation wavevector has a negative

component and a length larger than a�3 , which might be

considered an unfavorable situation. SSGð3þ dÞD contains the

tool transformssg, with which any user-specified transfor-

mation can be applied to the reciprocal basis vectors and

modulation wavevectors. Employing this tool with [equation

(20)]

q00 ¼ 2a03
� þ q0 ¼ �a1

� þ q ð22Þ
shows that a modulation wavevector with components

[equation (8)]

�0 0 ¼ 0; 0;
2

3
þ �

� �
ð23Þ

again represents the standard setting of superspace group No.

62.1.9.6 Pmcnð0; 0; �Þs00. Alternatively, the transformation

q000 ¼ �a03
� � q0 ¼ �q

�000 ¼ 0; 0;
1

3
� �

� �
ð24Þ

leads to a non-standard setting of superspace group No.

62.1.9.6.

The analysis of symmetry alone does not consider numerical

values of lattice parameters or modulation wavevectors.

Therefore, findssg does not employ this information.

Accordingly, it is impossible to give preference to one of the

transformations of equation (20) or equation (22). Instead, the

tool transformssg can be used for transformation to the

desired values.

Rb2ZnCl4 is incommensurately modulated below Ti ¼
375 K with � ¼ ð0; 0; �3Þ in the Pmcn setting (Hogervorst,

1986). The incommensurate component is �3 ¼ 1
3 � � with

� ¼ 0:04 at room temperature. The superspace group is

Pmcnð0; 0; �Þss0. SSGð3þ dÞD shows that this is another

alternate setting of superspace group No. 62.1.9.6

Pmcnð0; 0; �Þs00. The transformation now only involves the

choice of a different modulation wavevector:

a01 ¼ a1; a02 ¼ a2; a03 ¼ a3; q0 ¼ a3
� þ q

�0 ¼ ð0; 0; 1 þ �3Þ ¼ 0; 0;
4

3
� �

� �
: ð25Þ

Like in the previous example, the transformation given by

findssg does not lead to the setting with the shortest possible

modulation wavevector for the case of Rb2ZnCl4. Employing

transformssg shows that the standard setting of superspace

group No. 62.1.9.6 can also be obtained by the transformation

of modulation wavevector

q00 ¼ 2a0�3 � q0 ¼ a�3 � q

�00 ¼ ð0; 0; 1 � �3Þ ¼ 0; 0;
2

3
þ �

� �
: ð26Þ

As discussed in van Smaalen (2007), replacement of q ¼ �3a
�
3

by q ¼ ð1 � �3Þa�3 may change the apparently intrinsic trans-

lational component along the fourth coordinate for symmetry

operators that possess a nonzero intrinsic translational

component in the direction corresponding to the incommen-

surate component of the modulation wavevector. In the

present example that is ðc; sÞ [mirror operation with intrinsic

translation ð0; 0; 1
2 ;

1
2Þ] being replaced by ðc; 0Þ [mirror opera-

tion with intrinsic translation ð0; 0; 1
2 ; 0Þ]. These two settings of

the superspace group correlate with different normal-mode

descriptions of the same phase transition, for which it has been

established that the modulation wavevector with �3 ¼ 1
3 � �
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describes a distortion in terms of a �2 soft optical phonon,

while �00
3 ¼ 2

3 þ � leads to the preferred description of the

distortion in terms of a �3 soft optical phonon (Axe et al.,

1986). It is well known that a change of setting will sometimes

change the irreducible representation that contributes to a

distortion without changing the physical distortion itself.

3.3. The supercentered setting

Aperiodic crystals are characterized by d modulation

wavevectors, each of which possesses at least one irrational

component. According to symmetry, the values of these

components can be viewed as variable rather than having

specific irrational values. The other components are either

zero or may assume rational values as allowed by the point

symmetry. It is easily checked against the list of Bravais classes

of ð3 þ dÞD superspace groups that the allowed rational

components of modulation wavevectors are 1
2 and 1

3 in the

standard superspace-group settings, as well as nonzero inte-

gers in the case of BSGs based on a centered lattice of the

basic structure. The modulation wavevector is usually sepa-

rated into a rational part, with zeros and rational numbers as

components, and an irrational part, with zeros and the variable

components, according to

q ¼ qr þ qi; � ¼ �r þ �i: ð27Þ
A modulation wavevector with nonzero rational compo-

nents may naturally occur when a diffraction pattern of a

modulated crystal is indexed, first determining the unit cell –

centered if required – of the basic lattice, and then selecting an

appropriate modulation wavevector, e.g. the shortest possible

vector. However, rational components of q imply that the

lattice in superspace is a centered lattice with the special

feature that centering vectors contain nonzero components

both along the fourth coordinate and along at least one of the

three physical coordinates. Employing centered unit cells for

centered lattices is common practice. It has several advantages

in crystallographic analysis, facilitating the description of

reflection conditions and the analysis of point symmetry. For

superspace groups it has been denoted as the supercentered

setting as opposed to the BSG setting, where a

modulation wavevector with rational components

is combined with the standard centered setting of

the BSG (Stokes et al., 2011a). SSGð3þ dÞD
provides symmetry operators for both the BSG

and supercentered settings (Stokes et al., 2011b).

As an example, consider blue bronze

K0:3MoO3. (Despite the decimal subscript in the

usual form of the chemical formula, it possesses a

fully ordered crystal structure with two formula

units K3Mo10O30 per unit cell.) Blue bronze

develops an incommensurate charge-density

wave (CDW) below TCDW ¼ 183 K with a

modulation wavevector

� ¼ 0; 0:748;
1

2

� �
ð28Þ

at T ¼ 100 K in the setting of the high-temperature space

group. Schutte & de Boer (1993) have determined the crystal

structure of the incommensurate phase. With the modulation

wavevector of equation (28), they obtained the ð3 þ 1ÞD
superspace group C02=mð0; �; 1

2Þs0. This mixed setting contains

the C0 center ð1
2 ;

1
2 ; 0; 1

2Þ, which possesses a nonzero component

along the fourth coordinate (van Smaalen, 2007), and which is

different from the BSG setting comprising the C center

ð1
2 ;

1
2 ; 0; 0Þ. findssg shows that C02=mð0; �; 1

2Þs0 is an alternate

setting of superspace group No. 12.1.8.5 B2=mð0; 1
2 ; �Þ00

(Table 1 and Fig. 1). In physical space, the transformation from

the setting of Schutte & de Boer (1993) to the standard BSG

setting involves a permutation of the unit-cell axes and the

choice of a new modulation wavevector according to

a01 ¼ a1; a02 ¼ �a3; a03 ¼ a2; q0 ¼ a2
� � q: ð29Þ

Furthermore, an origin shift of ð1
2 ;

1
2 ; 0; 0Þ is required in order

to bring the origin onto the operator ð2; 0Þ instead of ð2; sÞ.
The components of q with respect to the transformed (primed)

reciprocal basis vectors follow from equation (8) as [compare

equation (21)]

�0 ¼ ð0; 1; 0Þ � 0; �2;
1

2

� �� � 1 0 0

0 0 1

0 �1 0

0
B@

1
CA

¼ 0;
1

2
; 1 � �2

� �
¼ 0;

1

2
; �0

3

� �
: ð30Þ

The standard supercentered setting is obtained from the

standard BSG setting B2=mð0 1
2 �3Þ00 by the transformation of

superspace basis vectors as given in SSGð3þ dÞD, and corre-

sponds to the following transformation of the physical-space

basis vectors and modulation wavevector (capital letters

indicate the supercentered setting):

A1 ¼ a1; A2 ¼ 2a2; A3 ¼ a3

�i ¼ ð0; 0; �3Þ: ð31Þ
Observe that the modulation wavevector is purely irrational in

the supercentered setting, as expected [equation (27)].
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Table 1
Symmetry operators of superspace group No. 12.1.8.5 in mixed, BSG and supercentered
settings.

The second column refers to the mixed setting chosen by Schutte & de Boer (1993) [who
incorrectly give the symbol C for the centering translation ð1

2 ;
1
2 ; 0; 1

2Þ] with the corresponding
supercentered setting in the third column, featuring the tentative symbols C0 and C0

c for the
centerings according to Table 3.9 in van Smaalen (2007). The fourth and fifth columns give the
standard BSG and standard supercentered settings as provided by SSGð3þ dÞD. The notation
of symmetry operators follows SSGð3þ dÞD, where �x has been replaced by x and similar.

Symmetry
operator C02=mð0� 1

2Þs0 C0
c2=mð0� 0Þs0 B2=mð0 1

2 �Þ00 Bb2=mð0 0 �Þ00

Centering ð1
2 ;

1
2 ; 0; 1

2Þ ð1
2 ;

1
2 ; 0; 1

2Þ ð1
2 ; 0; 1

2 ; 0Þ ð1
2 ; 0; 1

2 ; 0Þ
ð0; 0; 1

2 ;
1
2Þ ð0; 1

2 ; 0; 1
2Þ

ð1
2 ;

1
2 ;

1
2 ; 0Þ ð1

2 ;
1
2 ;

1
2 ;

1
2Þ

Identity ðx; y; z; tÞ ðX;Y;Z;TÞ ðx; y; z; tÞ ðX;Y;Z;TÞ
Twofold rotation ðx; y; z; zþ t þ 1

2Þ ðX;Y;Z;T þ 1
2Þ ðx; y; z; yþ tÞ ðX;Y;Z;TÞ

Inversion ðx; y; z; tÞ ðX;Y;Z;TÞ ðx; y; z; tÞ ðX;Y;Z;TÞ
Mirror ðx; y; z; zþ t þ 1

2Þ ðX;Y;Z;T þ 1
2Þ ðx; y; z; yþ tÞ ðX;Y;Z;TÞ
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4. A plethora of settings

4.1. (3 + 2)-Dimensional superspace groups

4.1.1. General features. Different settings of ð3 þ dÞD
superspace groups are obtained when different settings of the

BSG are chosen (x3.1). For d ¼ 1, further settings result from

the ambiguity in the choice of the modulation wavevector: all

modulation wavevectors that differ by a reciprocal-lattice

vector of the basic structure are equally valid [equation (19)]

and may define different settings of a superspace group (x3.2).

For d � 2, additional coordinate transformations involve the

replacement of the modulation wavevectors by linear combi-

nations of them.

Generalizing equation (7) shows that any set of reciprocal

vectors ( j ¼ 1; . . . ; d)

q0j ¼P3

i¼1

SMjia
�
i þ

Pd
k¼1

S"jkq
k ð32Þ

is an appropriate choice for the set of d modulation wave-

vectors, where SMji and S"jk are integers and detðS"jkÞ ¼ �1.

Such linear combinations of the modulation vectors of the

standard setting are often necessary to make the description of

experimental diffraction data simpler and more intuitive, but

can also have the opposite effect if applied arbitrarily.

In analyzing superspace groups with d ¼ 2, it is useful to

distinguish between ð3 þ 2ÞD and ð3 þ 1 þ 1ÞD superspace

groups, where the latter refer to

incommensurate crystals with two

independent modulation waves, while

the ð3 þ 2ÞD superspace groups refer

to crystals with two symmetry-

related modulation waves, such as

those in Bravais class No. 2.57

P4=mð�; �; 0Þð��; �; 0Þ.
As an example of a ð3 þ 1 þ 1ÞD

superspace group, consider

P2=mð0; 0; �1Þs0ð0; 0; �2Þs0. findssg

shows that this is an alternate setting

of superspace group No. 10.2.5.6

P2=mð0; 0; �1Þs0ð0; 0; �2Þ00. The trans-

formation which brings the original

setting into the standard BSG setting is

q01 ¼ q1; q02 ¼ q1 þ q2: ð33Þ
The difference between the two settings

is that the operator ð2; ssÞ in one setting

is equivalent to the operator ð2; s0Þ in

the standard setting. The transforma-

tion modifies the intrinsic translation of

a twofold axis along one of the super-

space coordinates. This is a feature

specific to transformations of the type

of equation (33), while the modification

of the modulation wavevector by a

reciprocal-lattice vector of the basic

structure [equation (19)] can only affect

the intrinsic translations of symmetry

operators that are screw axes or glide planes in three dimen-

sions. More complicated linear combinations of modulation

wavevectors may be required, as in the transformation

between I4ð0; 0; �1Þqð0; 0; �2Þs and the standard setting

I4ð0; 0; �1Þsð0; 0; �2Þ0 of superspace group No. 79.2.62.3

[equation (32)]:

q01 ¼ q1; q02 ¼ 2q1 þ q2: ð34Þ
The same concept can be applied for reducing the

number of rational components of the modulation

wavevectors. SSGð3þ dÞD shows that superspace group

P222ð1
2 ; �1; 0Þ00ð1

2 ; �2; 0Þ00 is an alternate setting of super-

space group No. 16.2.19.3 P222ð0; 1
2 ; �1Þ00ð0; 0; �2Þ00 with

�1 ¼ �1 and �2 ¼ ��1 þ �2. The transformation between

these settings involves a linear combination of the two

modulation wavevectors as well as a change of the setting of

the BSG according to

a01 ¼ a3; a02 ¼ a1; a03 ¼ a2;
q01 ¼ q1; q02 ¼ �q1 þ q2;

ð35Þ

where again the primed vectors refer to the standard BSG

setting.

4.1.2. NbSe3. Several of the features discussed here are

illustrated by the example of NbSe3. NbSe3 develops an

incommensurate CDW below TCDW1 ¼ 145 K. A second,

independent CDW develops below TCDW2 ¼ 59 K, then
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Figure 1
Output of findssg on SSGð3þ dÞD, showing the equivalence of superspace group C02=mð0�2

1
2Þs0 to

superspace group No. 12.1.8.5 B2=mð0 1
2 �3Þ00.
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resulting in an incommensurately

modulated structure with two inde-

pendent modulation waves, and

with symmetry given by the

ð3 þ 2ÞD superspace group No.

11.2.6.4 P21=mð1
2 ; 0; �1Þ00ð0; 0; �2Þ00

from SSGð3þ dÞD. Inspection of the

list of superspace groups shows that

No. 11.2.6.4 is the only superspace

group in its Bravais class that has BSG

P21=m. This implies that any possible

combinations of nonzero intrinsic

translations along the fourth and fifth

coordinate axes are equivalent to the

setting P21=mð1
2 ; 0; �1Þ00ð0; 0; �2Þ00 by

a suitable transformation.

The modulated, low-temperature

crystal structure of NbSe3 has been described in superspace

group P21=mð0; �1; 0Þs0ð1
2 ; �2;

1
2Þ00 (unique a2 axis) with (van

Smaalen et al., 1992)

� ¼ 0 �12 0
1
2 �22

1
2

� �
¼ 0 0:241 0

1
2 0:260 1

2

� �
: ð36Þ

This setting naturally arises for the following choices:

(i) The BSG is equal to the space group of the periodic

structure at ambient conditions, which has a unique axis a2

that is the preferred setting for monoclinic three-dimensional

space groups.

(ii) The choice of axes a1 and a3 is that of the previously

determined periodic crystal structure at ambient conditions.

(iii) Modulation wavevectors are chosen within the first

Brillouin zone.

(iv) The first modulation wavevector is that of the first

CDW and the second modulation wavevector applies to the

second CDW.

All four choices need to be adapted, in order to arrive at the

standard setting of this superspace group:

(i) The standard setting of the superspace group has

incommensurate components of the modulation wavevectors

along a�3, thus requiring a reordering of the basic structure

axes.

(ii) Transforming the second modulation wavevector into a

wavevector with one nonzero rational component requires a

basic structure monoclinic unit cell that involves linear

combinations of the axes a1 and a3 [compare to equation (1)].

Notice that this transformation does not affect the symbol of

the BSG.

(iii) The transformation of ð21; s0Þ into ð21; 00Þ requires the

transformation q01 ¼ a�2 � q1 [equation (32)].

(iv) The standard setting requires interchanging the two

modulation wavevectors.

Altogether, the transformation from the published setting

to the standard BSG setting of superspace group No. 11.2.6.4

is achieved by

a01 ¼ a3; a02 ¼ a1 � a3; a03 ¼ a2;
q01 ¼ q2; q02 ¼ a�2 þ q1;

ð37Þ

which implies a transformation of reciprocal basis vectors of

the basic structure as

a0�1 ¼ a�1 þ a�3; a0�2 ¼ a�1; a0�3 ¼ a�2 : ð38Þ
The components of the modulation wavevectors with respect

to the transformed reciprocal basis vectors follow from

equation (8) or by inspection of equations (37) and (38):

�0 ¼
1
2 0 �0

13

0 0 �0
23

� �
¼

1
2 0 �22

0 0 1 þ �12

� �
: ð39Þ

The tool transformssg can be used to demonstrate that an

alternate transformation, defined by a different choice of the

second modulation wavevector, also leads to the standard

BSG setting of superspace group No. 11.2.6.4:

a001 ¼ a01 ¼ a3; a002 ¼ a02 ¼ a1 � a3

a003 ¼ a03 ¼ a2; q001 ¼ q01 ¼ q2

q002 ¼ 2a0�3 � q02 ¼ a�2 � q1

�00 ¼
1
2 0 �00

13

0 0 �00
23

� �
¼

1
2 0 �22

0 0 1 � �12

� �
: ð40Þ

Choices (i), (ii) and (iv) are arbitrary – there does not appear

to be a compelling reason to adhere to the standard setting

except to establish the equivalence of different crystal struc-

tures. The choice (iii) of the modulation wavevector is related

to the important question about the real wavevectors of the

CDWs, which is not obvious because the incommensurate

components of the modulation wavevectors can either be

	0:25 or 	0:75, depending on the setting. This is most easily

analyzed with the help of the supercentered setting, which

follows from the standard BSG setting by the transformation

A1 ¼ 2a001; A2 ¼ a002; A3 ¼ a003

�i ¼ 0 0 �00
13

0 0 �00
23

� �
: ð41Þ

Structural analysis has shown that the first CDW (q002 in the

standard setting) is located on a pair of chains of niobium

atoms, denoted as the Nb3 atoms, while the second CDW (q001

= q01) is located on a pair of chains of Nb1 atoms (Fig. 2).
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Figure 2
Projection of the basic structure of NbSe3. All atoms are in mirror planes. Hatched and open circles
are atoms at 0:25 and 0:75 of the projected coordinate, respectively. Small circles are Se; large circles
are Nb, with numbers indicating Nb1, Nb2 and Nb3 atoms. Symmetry operators ð21; 00Þ and ð21; s0Þ
alternate in the supercentered setting. Unit cells are indicated for the published BSG setting (a1, a3;
solid lines), the standard BSG setting [a01 ¼ a3, a02; dashed lines; see equation (37)] and the
supercentered setting [A1, A2 ¼ a02; dashed lines; see equation (41)].
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SSGð3þ dÞD provides the explicit form of the symmetry

operators in the supercentered setting. Employing these

operators, one finds that the double chain of Nb1 atoms

centered on ð1
4 ;

1
2 ;Z;T;UÞ of the supercentered unit cell is

located on the screw axis f2z11j 1
2 ; 1; 1

2 ;
1
2 ; 0g.4 This is a screw

operator ð21; s0Þ as it is generated by the combination of the

screw ð21; 00Þ and the centering translation f1
2 ; 1; 0; 1

2 ; 0g. The

pair of chains of Nb3 atoms is related by the operator

f2z11j0; 1; 1
2 ; 0; 0g, which is a screw operator (21; 00). We judge

that q002i = q002 = ð0; 0; 0:759Þ is the real wavevector of the

Nb3 modulation, because an additional phase shift is not

involved on application of this symmetry. On the other

hand, the second wave with q001i = (0; 0; 0:260) [equations (39)

and (40)] implies symmetry for the pair of Nb1 chains

involving a phase shift of one half. The real wavevector

thus is a�3 � q1
i = ð0; 0; 0:740Þ, resulting in the setting

P21=mð1
2 ; 0; �1Þs0ð0; 0; �2Þ00 of superspace group No.

11.2.6.4. SSGð3þ dÞD shows that the standard setting can be

restored by a shift of the origin of 1
2 along a1. With this final

transformation, the symmetry of NbSe3 is described in the

standard setting, and the components of the modulation

wavevectors show that both CDWs are waves with wave-
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Table 2
Superspace groups for incommensurate compounds with two-dimensional modulations.

Given are the published modulation wavevectors and superspace-group symbols, the number and symbol of the standard BSG setting of the superspace group in
SSGð3þ dÞD, and the transformation of the published basic structure unit cell to the standard BSG setting as well as the modulation wavevectors of the latter.

Published SSGð3þ dÞD Superspace-group symbols for
Standard BSG setting

Compound Note T (K) q1/q2 No. published/standard BSG settings a01; a
0
2; a

0
3 q01/q02

Mo2S3 (a) 295 ð�0:056; 0:5; 0:229Þ 2.2.1.1 P1ð�; �; �Þð�; �; 	Þ1 a1; a2; a3 ð�0:056; 0:5; 0:229Þ
ð0:5; 0:469; 0Þ P1ð�1; �1; �1Þ0ð�2; �2; �2Þ0 ð0:5; 0:469; 0Þ

(Bi,Pb)2(Sr,Bi,Pb,Ca)2- (b) 295 ð0:234; 0; 0Þ 9.2.4.1 P : A0a : P1 a3; a1; a2 ð1; 0:234; 0Þ
CuO6þ� ð0:144; 0; 0Þ Bbð�1; �1; 0Þ0ð�2; �2; 0Þ0 ð0; 0:144; 0Þ

NbSe3 (c) < 59:0 ð0; 0:241; 0Þ 11.2.6.4 P : P21=mð0; �; 0Þð1
2 ; �

0; 1
2Þs1; 11 a3; a1 þ a3; a2 ð1

2 ; 0; 0:740Þ
ð1

2 ; 0:260; 1
2Þ P21=mð1

2 ; 0; �1Þ00ð0; 0; �2Þ00 ð0; 0; 0:759Þ
TTF TCNQ (d) < 38:0 ð0:25; 0:295; 0Þ 14.2.16.6 P : P21=c : cmm a3; a1; a2 ð0; 0:25; 0:295Þ

ð�0:25; 0:295; 0Þ P21=cð�; �; �Þ00ð��;��; �Þ00 ð0;�0:25; 0:295Þ
(PO2)4(WO3)8 (e) < 80:0 ð0:330; 0:292; 0Þ 19.2.50.3 P212121ð�; �; 0Þð��; �; 0Þ a3; a1; a2 ð0; 0:330; 0:292Þ

ð�0:330; 0:292; 0Þ P212121ð0; �; �Þ000ð0;��; �Þ000 ð0;�0:330; 0:292Þ
Sm2=3Cr2S4 (f) 295 ð0:3333; 0:3217; 0Þ 62.2.50.22 Pmnbð�� 0Þgm̈g a3; a2;�a1 ð0; 0:6783; 0:3333Þ

ð�0:3333; 0:3217; 0Þ Pbnmð0; �; �Þ000ð0;��; �Þ000 ð0;�0:6783; 0:3333Þ
GdS1:82 (g) 293:0 ð0:25; 0:33; 1

2Þ 85.2.58.2 P4=nð�; �; 1
2Þð00ÞðssÞ a1; a2; a3 ð0:25; 0:33; 1

2Þð�0:33; 0:25; 1
2Þ P4=nð�; �; 1

2Þ00ð��; �; 1
2Þ00 ð�0:33; 0:25; 1

2Þ
LaSe1:85 (h) 130:0 ð�0:292; 0:292; 1

2Þ 85.2.58.2 P4=nð��; �; 1
2Þð�; �; 1

2Þ00 a1; a2; a3 ð0:292; 0:292; 1
2Þð0:292; 0:292; 1

2Þ P4=nð�; �; 1
2Þ00ð��; �; 1

2Þ00 ð�0:292; 0:292; 1
2Þ

Ba0:39Sr0:61Nb2O6 (i) 295 ð0:3075; 0:3075; 1
2Þ 100.2.69.13 P4bmðp p 1

2 ; p � p 1
2Þ000 a1; a2; a3 ð0:3075; 0:3075; 1

2Þð0:3075;�0:3075; 1
2Þ P4bmð�; �; 1

2Þ000ð��; �; 1
2Þ000 ð�0:3075; 0:3075; 1

2Þ
Sr2TiSi2O8 (j) 295 ð0:3; 0:3; 1

2Þ 100.2.69.14 P4bmð��; �; 1
2 ; �; �; 1

2Þ0gg a1; a2; a3 ð0:3; 0:3; 1
2Þð�0:3; 0:3; 1

2Þ P4bmð�; �; 1
2Þ00sð��; �; 1

2Þ000 ð�0:3; 0:3; 1
2Þ

Ca2CoSi2O7 (k) 295 ð0:2913; 0:2913; 0Þ 113.2.68.6 P421mðp p 0; �p p 0Þ4mg a1; a2; a3 ð0:2913; 0:2913; 0Þ
ð�0:2913; 0:2913; 0Þ P421mð�; �; 0Þ00sð��; �; 0Þ000 ð�0:2913; 0:2913; 0Þ

(Sr0:13Ca0:87)2CoSi2O7 (l) 295 ð0:286; 0:286; 0Þ 113.2.68.6 P421m: 4mg a1; a2; a3 ð0:286; 0:286; 0Þ
ð�0:286; 0:286; 0Þ P421mð�; �; 0Þ00sð��; �; 0Þ000 ð�0:286; 0:286; 0Þ

CaNdGa3O7 (m) 293 ð0:2319; 0:2319; 0Þ 113.2.68.6 P421mð�; �; 0Þ00sð��; �; 0Þ000 a1; a2; a3 ð0:2319; 0:2319; 0Þ
ð�0:2319; 0:2319; 0Þ P421mð�; �; 0Þ00sð��; �; 0Þ000 ð�0:2319; 0:2319; 0Þ

CaLaGa3O7 (n) 293 ð0:2160; 0:2160; 0Þ 113.2.68.6 P421mð�; �; 0Þ00sð��; �; 0Þ000 a1; a2; a3 ð0:2160; 0:2160; 0Þ
ð�0:2160; 0:2160; 0Þ P421mð�; �; 0Þ00sð��; �; 0Þ000 ð�0:2160; 0:2160; 0Þ

Ni5:81SnTe2 (o) 153 ð0;�0:410; 0Þ 139.2.67.7 I4=mmmð0 � � 0; � 0 0Þ0:ss:mm �a2, a1, a3 ð0:410; 0; 0Þ
ð0:410; 0; 0Þ I4=mmmð�; 0; 0Þ0s00ð0; �; 0Þ0s00 ð0; 0:410; 0Þ

1T-TaS2 (p) < 350:0 ð0:245; 0:068; 1
3Þ 147.2.72.1 P3ð� � 1=3Þ a1, a2, a3 ð0:068;�0:313; 1

3Þð�0:068; 0:313; 1
3Þ P3ð�; �; 1

3Þ00ð��� �; �; 1
3Þ00 ð0:245; 0:068; 1

3Þ

0-Cu3þxSi (q) 298 ð0:244; 0:244; 1

3Þ 162.2.76.3 P31mð�; �; 1
3Þ00ð�2�; �; 1

3Þ00 a1, a2, a3 ð0:244; 0:244; 1
3Þð�0:488; 0:244; 1

3Þ P31mð�; �; 1
3Þ00ð�2�; �; 1

3Þ00 ð�0:488; 0:244; 1
3Þ

4Hb-TaSe2 (r) < 410:0 ð 3
13 ;

1
13 ; 0Þ 176.2.80.1 P63=mð� � 0Þ a1, a2, a3 ð 3

13 ;
1
13 ; 0Þ

ð� 1
13 ;

4
13 ; 0Þ P63=mð�; �; 0Þ00ð��� �; �; 0Þ00 ð� 4

13 ;
3

13 ; 0Þ
Ag0:6NbS2 (s) 100 ð0:175; 0:175; 0Þ 186.2.83.4 P63mc : 6mm a2, a1, �a3 ð0:175; 0:175; 0Þ

ð�0:175; 0:350; 0Þ P63mcð�; �; 0Þ000ð�2�; �; 0Þ000 ð�0:350; 0:175; 0Þ
Au2þxCd1�x (t) 295 ð0:43; 0:43; 0Þ 194.2.83.4 P63=mmc : 61mm a2, a1, �a3 ð0:43; 0:43; 0Þ

ð�0:43; 0:86; 0Þ P63=mmcð�; �; 0Þ0000ð�2�; �; 0Þ0000 ð�0:86; 0:43; 0Þ
Cu5Sb (u) 295 ð0:43; 0:43; 0Þ 194.2.83.4 P63=mmc : 61mm a2, a1, �a3 ð0:43; 0:43; 0Þ

ð�0:43; 0:86; 0Þ P63=mmcð�; �; 0Þ0000ð�2�; �; 0Þ0000 ð�0:86; 0:43; 0Þ

Notes: (a) Schutte et al. (1993). (b) Gao et al. (1990). (c) van Smaalen et al. (1992). (d) TTF (tetrathiafulvalene) and TCNQ (tetracyanoquinodimethane), Bouveret & Megtert (1989). (e)
Ludecke et al. (2001); an extensive review of basic structures and CDW transitions of the phosphate bronzes (PO2)4(WO3)2m (2<m< 14) is given by Roussel et al. (2000). (f) Lafond et
al. (1996). (g) Tamazyan et al. (2003). (h) Graf & Doert (2009). (i) Woike et al. (2003). (j) Höche et al. (2003). (k) Hagiya et al. (1993). (l) Bagautdinov et al. (2000). (m) Wei et al. (2011).
(n) Wei et al. (2012). (o) Isaeva et al. (2007). (p) Yamamoto et al. (1990) and Spijkerman et al. (1997). (q) Palatinus et al. (2011). (r) Ludecke et al. (1999). (s) van der Lee et al. (1991). (t)
Yamamoto (1983). (u) Motai et al. (1993).

4 The symbol f2z11j 1
2 ; 1; 1

2 ;
1
2 ; 0g indicates an operator with a twofold rotation

2z of the BSG along a3 combined with a unit 2 � 2 matrix ", and followed by a
superspace translation ð1

2 ; 1; 1
2 ;

1
2 ; 0Þ.
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vectors of 	0:75 on their respective double chains of niobium

atoms.

4.1.3. Centerings in internal space. Table 2 compiles

superspace groups for a series of compounds with two-

dimensional modulations. Symbols for the superspace groups

from the original publications encompass a disparate set of

notations, including symbols based on the online database

of ð3 þ dÞD superspace groups (d ¼ 1; 2; 3) of Yamamoto

(2005), as in the case of Ca2CoSi2O7, symbols based on Janner

et al. (1983), as in the case of Mo2S3, and symbols derived from

these notations, such as replacing p by � in the case of

Sm2=3Cr2S4, as well as other ad hoc symbols.

While for several compounds a permutation is required

of the basis vectors of the basic structure unit cell in

order to transform the published setting into the

standard setting, other, less trivial transformations

occur too. SSGð3þ dÞD shows that the symmetry of

tetrathiafulvalene tetracyanoquinodimethane (TTF TCNQ),

P21=cð�; �; �Þ00ð��;��; �Þ00, is based on a supercentered

lattice, where the centering exclusively involves the two

internal coordinates. The supercentered setting has modula-

tion wavevectors Q1 = ð�11; �12; 0Þ and Q2 = ð0; 0; �23Þ with

q1 ¼ Q1 þQ2 ¼ ð�11; �12; �23Þ
q2 ¼ �Q1 þQ2 ¼ ð��11;��12; �23Þ; ð42Þ

resulting in the reflection condition and corresponding

centering translation:

ðHKLM1 M2Þ: M1 þM2 ¼ 2n ðn is an integerÞ
ð0; 0; 0; 1

2 ;
1
2Þ:

ð43Þ

Monoclinic symmetry is the lowest symmetry where

this kind of superspace lattice centering can occur. For

Ca2CoSi2O7, on the other hand, the superspace group

P421mð�; �; 0Þ00sð��; �; 0Þ000 does not possess a centered

lattice, despite the seemingly simpler modulation wavevectors

Q1 = ð�; 0; 0Þ and Q2 = ð0; �; 0Þ, which are related to q1 and q2

as in equation (42). The reason is that Q1 and Q2 are related

by symmetry in the same way as q1 and q2 are, and the would-

be supercentering does not have an advantage over the

primitive lattice from the point of view of symmetry. Examples

of supercentered lattices with higher symmetries are given for

three-dimensional modulations in x4.2.

A peculiar feature of the modulation of TTF TCNQ is that

one of the unrestricted components is not experimentally

distinguishable from zero (�11 ¼ �21 ¼ �0
13 ¼ �0

23 ¼ � ¼ 0).

The explanation probably lies in the optimal phase relations

between the CDWs on neighboring stacks of TTF or TCNQ

molecules, as it is governed by the physics of CDW formation.

However, in this case the phase relation is not reflected in

the symmetry of the crystal structure. Similar observations

can be made for Mo2S3 (�1 ¼ �2 ¼ 1
2 and �2 ¼ 0),

(Bi,Pb)2(Sr,Bi,Pb,Ca)2CuO6þ� (�2 ¼ 0) and LaSe1:85 (� ¼ �).

For these compounds, the special values of the components

of the modulation wavevectors are reminiscent of the

higher symmetries at high temperatures [monoclinic for

Mo2S3 and orthorhombic for the high-Tc superconductor

(Bi,Pb)2(Sr,Bi,Pb,Ca)2CuO6þ�] or the higher symmetry of a

hypothetical basic structure (Laue symmetry 4=mmm for

LaSe1:85).

The lattice type (primitive, centered BSG or supercentered)

is the same for all superspace groups belonging to a Bravais

class. Likewise, the choice of modulation wavevectors should

be the same for all superspace groups within a single Bravais

class: the Bravais class is defined by the point symmetry of the

lattice together with the modulation wavevectors. A further

requirement on the modulation wavevectors is that they must

transform according to the three-dimensional point symmetry

of the superspace group. These requirements become impor-

tant for the selection of modulation wavevectors in the case of

trigonal and hexagonal Bravais classes of ð3 þ 2ÞD superspace

groups. Since all these Bravais classes contain superspace

groups with acentric trigonal symmetry (Table 3), it is neces-

sary to choose a pair of modulation wavevectors that enclose

an angle of 120
 and not 60
 (Fig. 3). With the exception of the

recent study on 
0-Cu3þxSi, this condition has not been obeyed

in studies of the compounds with trigonal or hexagonal

symmetries listed in Table 2, where the angle between q1 and

q2 was chosen as 60
. While not wrong in these cases, it is

highly preferable to describe these structures using an angle of

120
 between the modulation wavevectors so as to be

consistent with the settings of their Bravais classes.

4.2. (3 + 3)-Dimensional superspace groups

Different settings of ð3 þ 3ÞD superspace groups are

obtained by means of the same degrees of freedom that apply

to ð3 þ 2ÞD superspace groups. That is, the setting of a

ð3 þ 3ÞD superspace group depends on the choice of basic

structure basis vectors and on the freedom in the choice of

modulation wavevectors, including the possibility to replace

the modulation wavevectors by linear combinations of them

[equation (32)].

4.2.1. Supercentered setting of (TaSe4)2I. (TaSe4Þ2I has a

periodic structure with space group I422 at ambient condi-

tions. A CDW develops below TCDW = 263 K. It is expressed in

the diffraction by the presence of eight incommensurate

satellite reflections around each main reflection, which can be

indexed as first-order satellite reflections according to the four

modulation wavevectors

research papers

84 Sander van Smaalen et al. � Equivalence of superspace groups Acta Cryst. (2013). A69, 75–90

Table 3
Selected ð3 þ 2ÞD superspace groups with acentric trigonal symmetry.

Other superspace groups exist that differ in the intrinsic translations.

No. Superspace-group symbol

143.2.72.1 P3ð�; �; 1
3Þ0ð��� �; �; 1

3Þ0
149.2.76.3 P312ð�; �; 1

3Þ000ð�2�; �; 1
3Þ000

150.2.78.1 P321ð�; 0; 1
3Þ000ð��; �; 1

3Þ000
143.2.80.4 P3ð�; �; 0Þ0ð��� �; �; 0Þ0
149.2.82.6 P312ð�; 0; 0Þ000ð��; �; 0Þ000
150.2.82.4 P321ð�; 0; 0Þ000ð��; �; 0Þ000
149.2.83.7 P312ð�; �; 0Þ000ð�2�; �; 0Þ000
150.2.83.5 P321ð�; �; 0Þ000ð�2�; �; 0Þ000
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q1 ¼ ð0:0641; 0:0641; 0:151Þ
q2 ¼ ð�0:0641; 0:0641; 0:151Þ
q3 ¼ ð�0:0641;�0:0641; 0:151Þ
q4 ¼ ð0:0641;�0:0641; 0:151Þ: ð44Þ

van Smaalen et al. (2001) incorrectly reported this as a four-

dimensional modulation (Table 4), but then continued to show

that the phase transition is accompanied by a lowering of the

point symmetry and the formation of a multiply twinned

crystal with a one-dimensional incommensurate modulation in

each domain. Nevertheless, for the purpose of illustrating a

fundamental issue of symmetry, we will proceed as though all

modulation wavevectors would originate in a single domain,

where the number of symmetry-equivalent modulation

wavevectors is larger than the dimension of the modulation.

The modulation in equation (44) is actually three-dimensional,

because q4 = q1 � q2 þ q3. Despite this relationship between

the modulation wavevectors, the tetragonal symmetry requires

that modulation wavefunctions are symmetric in the four

arguments

q1x; q2x; q3x; q4x ¼ q1x� q2xþ q3x: ð45Þ

This symmetry becomes obvious in the supercentered setting,

where SSGð3þ dÞD shows that there are two symmetry-

equivalent modulation wavevectors, Q1 and Q2, in addition to

a third wavevector, Q3, parallel to the tetragonal axis:

Acta Cryst. (2013). A69, 75–90 Sander van Smaalen et al. � Equivalence of superspace groups 85
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Table 4
Superspace groups for incommensurate compounds with three-dimensional modulations.

Given are the published modulation wavevectors and superspace-group symbol, the number and symbol of the standard BSG setting of the superspace group in
SSGð3þ dÞD and the modulation wavevectors in the standard BSG setting. The published and standard basic structure unit cells are equal to each other: a0 i ¼ ai
(i ¼ 1; 2; 3Þ.

SSGð3þ dÞD Superspace-group symbols for
Standard BSG setting

Compound Note T (K) Published q1=q2=q3 No. published/standard BSG settings q01=q02=q03

(TaSe4Þ2I (a) < 263:0 ð0:0641; 0:0641; 0:1510Þ 97.3.179.24 I422ð�; �; �Þ000 ð0:0641; 0:0641; 0:1510Þ
ð�0:0641; 0:0641; 0:1510Þ I422ð�; �; �Þ000ð��; �; �Þ000ð�;��; �Þ000 ð�0:0641; 0:0641; 0:1510Þ
ð0:0641;�0:0641; 0:1510Þ ð0:0641;�0:0641; 0:1510Þ

Fe1�xO (b) 295 ð0:398; 0; 0Þ 225.3.209.1 P : Fm3m : Pm3m ð0:398; 0; 0Þ
ð0; 0:398; 0Þ Fm3mð�; 0; 0Þ000ð0; �; 0Þ000ð0; 0; �Þ000 ð0; 0:398; 0Þ
ð0; 0; 0:398Þ ð0; 0; 0:398Þ

None (c) ð0; �; �Þ 225.3.212.5 Fm3mð0pp; p0p; pp0Þmtm ð0; �; �Þ
ð�; 0; �Þ Fm3mð0; �; �Þ000ð�; 0; �Þ000ð�; �; 0Þ000 ð�; 0; �Þ
ð�; �; 0Þ ð�; �; 0Þ

Cu9BiS6 (d) 295 ð�0:154; 0:154; 0:154Þ 225.3.215.7 P : Fm3m : Fm3m ð0:154; 0:154; 0:154Þ
ð0:154;�0:154; 0:154Þ Fm3mð�; �; �Þ000ð�;��;��Þ000ð��; �;��Þ000 ð0:154;�0:154;�0:154Þ
ð0:154; 0:154;�0:154Þ ð�0:154; 0:154;�0:154Þ

Bi0:85Cr0:15O1:73 (e) 295 ð0:2866; 0:2866; 0:2866Þ 225.3.215.7 P : Fm3m : Fm3m ð0:2866; 0:2866; 0:2866Þ
ð0:2866;�0:2866;�0:2866Þ Fm3mð�; �; �Þ000ð�;��;��Þ000ð��; �;��Þ000 ð0:2866;�0:2866;�0:2866Þ
ð�0:2866; 0:2866;�0:2866Þ ð�0:2866; 0:2866;�0:2866Þ

Bi0:84Mo0:16O1:74 (f) 295 ð0:2926; 0:2926; 0:2926Þ 225.3.215.7 P : Fm3m : Fm3m ð0:2926; 0:2926; 0:2926Þ
ð0:2926;�0:2926;�0:2926Þ Fm3mð�; �; �Þ000ð�;��;��Þ000ð��; �;��Þ000 ð0:2926;�0:2926;�0:2926Þ
ð�0:2926; 0:2926;�0:2926Þ ð�0:2926; 0:2926;�0:2926Þ

Bi0:78Nb0:22O1:72 (g) 295 ð0:37; 0:37; 0:37Þ 225.3.215.8 P : Fm3m : Fd3m ð0:37; 0:37; 0:37Þ
ð0:37;�0:37;�0:37Þ Fm3mð�; �; �Þq00ð�;��;��Þq00ð��; �;��Þ000 ð0:37;�0:37;�0:37Þ
ð�0:37; 0:37;�0:37Þ ð�0:37; 0:37;�0:37Þ

Bi103Ta25O217 (h) 295 ð0:375; 0:375; 0:375Þ 225.3.215.8 P : Fm3m : Fd3m ð0:375; 0:375; 0:375Þ
ð0:375;�0:375;�0:375Þ Fm3mð�; �; �Þq00ð�;��;��Þq00ð��; �;��Þ000 ð0:375;�0:375;�0:375Þ
ð�0:375; 0:375;�0:375Þ ð�0:375; 0:375;�0:375Þ

BaBi3O5:5 (i) 295 ð0; 0:3835; 0:3835Þ 229.3.211.5 P : Im3m : Im3m ð0; 0:3835; 0:3835Þ
ð0:3835; 0; 0:3835Þ Im3mð0; �; �Þ000ð�; 0; �Þ000ð�; �; 0Þ000 ð0:3835; 0; 0:3835Þ
ð0:3835; 0:3835; 0Þ ð0:3835; 0:3835; 0Þ

V6Ni16Si7 (j) 295 ð0:361; 0:361; 1:361Þ 229.3.214.8 N : Im3m : Fm3m ð1:361; 1:361; 1:361Þ
ð0:361;�0:361; 1:361Þ Im3mð�; �; �Þq00ð�;��;��Þq00ð��; �;��Þ000 ð1:361;�1:361;�1:361Þ
ð�0:361;�0:361; 1:361Þ ð�1:361; 1:361;�1:361Þ

Notes: (a) van Smaalen et al. (2001) incorrectly reported a ð3 þ 4ÞD superspace group P422ð�; �; �Þ. (b) Wustite, x ¼ 0:098; Yamamoto (1982). (c) Provided for purposes of comparison
with the other groups with BSG Fm3m; ‘published’ setting is the symbol from Yamamoto (2005). (d) Ohmasa et al. (1995). (e) Esmaeilzadeh et al. (2001) only discuss the supercentered
setting. They give two more compositions: Bi1�xCrxO1:5þ1:5x with x ¼ 0:05 (� ¼ 0:307) and x ¼ 0:10 (� ¼ 0:2973). (f) Valldor et al. (2000). (g) Withers et al. (1999): Bi1�xNbxO1:5þx

(0:06< x< 0:23). (h) Ling et al. (1998): Bi1�xTaxO1:5þx (0:1< x< 0:25). (i) Esmaeilzadeh et al. (2000). (j) Withers et al. (1990) and Yamamoto (1993).

Figure 3
Reciprocal plane parallel to ða�1; a�2Þ of a hexagonal lattice. (a) Indexing of
satellite reflections with two modulation wavevectors enclosing an angle
of 60
. (b) Preferred indexing with modulation wavevectors enclosing an
angle of 120
. Notice that q02 ¼ �q1 þ q2.
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Q1 ¼ ð0:0641; 0:0641; 0Þ
Q2 ¼ ð�0:0641; 0:0641; 0Þ
Q3 ¼ ð0; 0; 0:151Þ: ð46Þ

The four pairs of satellite reflections as well as the four

equivalent arguments of the modulation wavefunctions then

follow as all four equivalent linear combinations of Q3 with Q1

or Q2:

q1 ¼ Q1 þQ3; q2 ¼ Q2 þQ3;
q3 ¼ �Q1 þQ3; q4 ¼ �Q2 þQ3:

ð47Þ

In accordance with the centering of the superspace lattice,

diffracted satellite reflections do not appear at �Qj

ðj ¼ 1; 2; 3Þ, and modulation functions do not contain

harmonics involving arguments Qjx, but only contain linear

combinations like ½Q1xþQ3x� [equation (47)].

4.2.2. Superspace symmetry with BSG Fm3m. All known

compounds with a three-dimensional modulation possess

cubic symmetry. Wustite, Fe1�xO, is based on an F-centered

cubic lattice with BSG Fm3m and the simple modulation with

q1 = ð0:398; 0; 0Þ (Table 4). The superspace group is

symmorphic and centerings other than the F-centering,

1
2 ;

1
2 ; 0; 0; 0; 0

� �
1
2 ; 0; 1

2 ; 0; 0; 0
� �
0; 1

2 ;
1
2 ; 0; 0; 0

� �
;

ð48Þ

of the BSG do not occur.

Three compounds have been reported with symmetry

according to superspace group No. 225.3.215.7

Fm3mð�; �; �Þ000ð�;��;��Þ000ð��; �;��Þ000. They have

the same BSG as wustite but different modulation wavevec-

tors. As with (TaSe4)2I (x4.2.1), four symmetry-equivalent

modulation wavevectors exist. The supercentered setting

clearly reveals the three-dimensional nature of the modulation

with q4 = ð�q1 � q2 � q3Þ (Table 4), and

q1 ¼ Q1 þQ2 þQ3; q2 ¼ Q1 �Q2 �Q3;
q3 ¼ �Q1 þQ2 �Q3; q4 ¼ �Q1 �Q2 þQ3:

ð49Þ

For Bi0:85Mo0:16O1:74 the modulation wavevectors of the

supercentered setting are

Q1 ¼ ð0:2926; 0; 0Þ
Q2 ¼ ð0; 0:2926; 0Þ
Q3 ¼ ð0; 0; 0:2926Þ:

ð50Þ

The centering translations of the supercentered setting

combine the F-center of the basic structure [equation (48)]

with a so-called ‘F-center’ among the internal superspace

coordinates, the latter being defined as

0; 0; 0; 0; 1
2 ;

1
2

� �
0; 0; 0; 1

2 ; 0; 1
2

� �
0; 0; 0; 1

2 ;
1
2 ; 0

� �
:

ð51Þ

This can be compared with superspace group No. 225.3.212.5,

based on modulation wavevectors of the type ð0; �; �Þ, where

the supercentered setting again involves modulation wave-

vectors of the type Q1 = ð�; 0; 0Þ [equation (50)], but now

combines the F-center of the basic structure [equation (48)]

with an ‘I-center’ among the internal superspace dimensions

with centering translation ð0; 0; 0; 1
2 ;

1
2 ;

1
2Þ.

Interestingly, replacing three-valent molybdenum atoms by

five-valent niobium or tantalum atoms leads to a similar, but

different structure involving mirror planes with nonzero

intrinsic translational components along the internal super-

space dimensions (Table 4).

4.2.3. Modulation in the I-centered lattice of V6Ni16Si7.

V6Ni16Si7 is a three-dimensionally modulated crystal with

symmetry based on the cubic I-centered lattice and BSG

Im3m (Table 4). Withers et al. (1990) report an indexing of the

electron diffraction based on the modulation wavevectors

q1 ¼ 1
3 ð1; 1; 4Þ þ "ð1; 1; 1Þ ¼ ð0; 0; 1Þ þ �0ð1; 1; 1Þ

q2 ¼ 1
3 ð1; 1; 4Þ þ "ð1; 1; 1Þ ¼ ð0; 0; 1Þ þ �0ð1; 1; 1Þ

q3 ¼ 1
3 ð1; 1; 4Þ þ "ð1; 1; 1Þ ¼ ð0; 0; 1Þ þ �0ð1; 1; 1Þ

ð52Þ

where �0 ¼ 1
3 þ " and q4 = 1

3 ð1; 1; 4Þ þ "ð1; 1; 1Þ = q1 � q2 þ q3.

Withers et al. (1990) also report the observed reflection

conditions, but then provide an analysis based on the theory of

irreducible representations (normal-mode analysis). Yama-

moto (1993) has assigned to V6Ni16Si7 the ð3 þ 3ÞD super-

space group with the tentative symbol Im3mð�; �; 1 þ �Þ.
SSGð3þ dÞD shows that such a superspace group does not

exist. Since symmetry operators are not provided by Withers et

al. (1990) or Yamamoto (1993), we could not use the findssg

tool on SSGð3þ dÞD for computing the transformation to the

standard setting. However, SSGð3þ dÞD does show that the

only possible modulation wavevectors for three-dimensional

modulations with BSG Im3m are ð�; 0; 0Þ, ð0; �; �Þ and

ð�; �; �Þ (Bravais classes 3.208, 3.211 and 3.214, respectively).

Indeed, the modulation wavevectors can be rewritten as

q1 þ ð1; 1; 0Þ ¼ ð1; 1; 1Þ þ �0ð1; 1; 1Þ ¼ �ð1; 1; 1Þ
q2 þ ð1; 1; 0Þ ¼ ð1; 1; 1Þ þ �0ð1; 1; 1Þ ¼ �ð1; 1; 1Þ
q3 þ ð1; 1; 0Þ ¼ ð1; 1; 1Þ þ �0ð1; 1; 1Þ ¼ �ð1; 1; 1Þ;

ð53Þ

where � = 1 þ �0 = 4
3 þ ". Notice that we cannot add the basic

structure reciprocal vector ð0; 0; 1Þ to the modulation wave-

vectors [equation (19)], because this is a forbidden reciprocal

vector for the I-centered lattice. Instead, we have added the

vector ð1; 1; 0Þ to q1 in order to arrive at a reciprocal vector

along the diagonal of the cubic unit cell. Of course, this

goes at the expense of a considerably increased

length for the modulation wavevectors. Nevertheless, a

description that respects the symmetry of the problem

requires these long modulation wavevectors. With the

new indexing, the non-symmorphic superspace group

Im3mð�; �; �Þq00ð�;��;��Þq00ð��; �;��Þ000 is obtained,

which corresponds to No. 229.3.214.8 in SSGð3þ dÞD (Table 4).

5. Incommensurate composite crystals

Incommensurate composite crystals comprise two or more

subsystems, each of which has an incommensurately modu-

lated structure. The basic structures of the subsystems are

mutually incommensurate, but for all known compounds, any

pair of subsystems share a common reciprocal-lattice plane of

their basic structures. The third reciprocal basis vector of one
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subsystem then acts as modulation wavevector for the other

subsystem, and the other way around. The symmetry of a

composite crystal is given by a ð3 þ dÞD superspace group,

while the symmetry of each subsystem is also given by a

ð3 þ dÞD superspace group. These so-called subsystem

superspace groups often are different (inequivalent) groups

according to the definition of superspace group employed in

de Wolff et al. (1981) and Stokes et al. (2011a).

The various aspects of the structures and symmetries of

composite crystals are illustrated by the example of [Sr]x[TiS3]

(Onoda et al., 1993), where square brackets indicate the

subsystems. The seemingly non-stoichiometric composition

with x ¼ 1:132 reflects the incommensurate ratio of the

volumes of the basic structure unit cells of subsystem 1 (TiS3)

and subsystem 2 (Sr). [Sr]x[TiS3] is a composite crystal of the

columnar type, where chains of Sr atoms and columns of TiS3

are alternatingly arranged on a two-dimensional hexagonal

lattice (Fig. 4). The basic structure reciprocal lattices share the

basis vectors in the basal plane, while the third direction

(parallel to the chains) is the incommensurate direction:

a�1 ¼ a�11 ¼ a�21 a�2 ¼ a�12 ¼ a�22

a�3 ¼ a�13 ¼ q21 a�4 ¼ a�23 ¼ q11 ð54Þ

where a�13, for example, denotes the third reciprocal basis

vector of the first subsystem and q11 is the first (and in this

example only) modulation wavevector of the first subsystem

with q11 = ða13=a23Þa�13.

An indexing of all reflections with four integers is obtained

with the four reciprocal basis vectors M� = fa�1; a�2; a�3; a�4g.
Along with its modulation wavevector, the reciprocal basis

vectors of subsystem 	 (	 ¼ 1; 2) are obtained from the four

reciprocal vectors M� by a ð3 þ dÞ � ð3 þ dÞ integer matrix W	

(d ¼ 1 in the present example) according to

a�	i ¼
P3þd

k¼1

W	
ika

�
k

q	j ¼ P3þd

k¼1

W	
3þj;ka

�
k: ð55Þ

The matrices W	 extract the basic structure reciprocal basis

vectors and modulation wavevectors of subsystem 	 from the

basis vectors used for indexing. In this sense, W	 represents a

coordinate transformation in superspace between the arbi-

trarily chosen superspace representation M� and the natural

subsystem superspace, which is specific to each subsystem.

Operators of the subsystem superspace group follow as (van

Smaalen, 1991)

R	
s ðgÞ ¼ W	RsðgÞðW	Þ�1

v	sðgÞ ¼ W	vsðgÞ: ð56Þ
Because reciprocal basis vectors of one subsystem act as

modulation wavevectors of the other subsystem, W	 must be a

coordinate transformation that mixes the first three dimen-

sions and the additional dimensions for at least some of the

subsystems. This coordinate transformation is a forbidden

transformation when establishing the equivalence of super-

space groups (Stokes et al., 2011a). Therefore, the subsystem

superspace groups are generally inequivalent, unless they are

equivalent by chance, as is the case for the mineral levyclau-

dite which possesses triclinic symmetry (Evain et al., 2006).

For [Sr]x[TiS3] equation (54) shows that W1 is the identity

matrix. This choice of M� has become a de facto standard for

composite crystals. It implies a setting where the symmetry of

[Sr]x[TiS3] and the symmetry of the first subsystem are

described by the same superspace group. Onoda et al. (1993)

give the superspace group P:R3mð0; 0; �Þ1s, which is found to

be an alternate symbol for superspace group No. 166.1.22.2,

R3mð0; 0; �Þ0s on SSGð3þ dÞD. Apart from the R-centering of

the hexagonal basic structure unit cell, other centerings in

superspace do not exist for this lattice.

Equation (54) leads for the second subsystem to

W2 ¼
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BB@

1
CCA: ð57Þ

The R-centering of the original setting transforms by W2

[equation (56)] into the superspace centering vectors
1
3 ;

2
3 ; 0; 2

3

� �
and 2

3 ;
1
3 ; 0; 1

3

� �
, which represent an H-type centering

of the BSG and which has been denoted as the H 0-centering of

the superspace lattice (van Smaalen, 2007). SSGð3þ dÞD shows

that the transformation by W2 [equation (57)] leads to the

supercentered setting of the ð3 þ 1ÞD superspace group No.

163.1.23.1, P31cð1
3 ;

1
3 ; �Þ000.

The subsystem superspace groups of [Sr]x[TiS3] turn out to

be inequivalent ð3 þ 1ÞD superspace groups, although they are

of course equivalent as 4D space groups as governed by the

coordinate transformation W2. The case of [Sr]x[TiS3] is

special as it combines different Bravais lattices of the BSG for

the subsystems. The rhombohedral lattice with an R-centering
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Figure 4
Crystal structure of [Sr]x[TiS3]. (a) Projection showing the two types of
columns with mutually incommensurate periodicities a13 for the a3 axis of
the first subsystem (TiS3) and a23 for the a3 axis of the second subsystem
(TiS3). (b) Projection along the mutually incommensurate direction
showing the common basal plane of the hexagonal lattice. Large circles
denote metal atoms, small circles represent sulfur atoms. Reprinted from
Figs. 1.4(c) and 1.4(d) in van Smaalen (2007) by permission of Oxford
University Press (http://www.oup.com).
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and the primitive trigonal space group described with an

H-centered unit cell can be considered as different centerings

of the hexagonal unit cell, which share a common reciprocal-

lattice plane perpendicular to the trigonal axis (Fig. 5).

Other incommensurate composite crystals, including misfit

layer sulfides (Wiegers, 1996), misfit layer cobalt oxides (Isobe

et al., 2007) and urea inclusion compounds (van Smaalen &

Harris, 1996), also exhibit a pairing of two inequivalent

superspace groups. A detailed analysis of this feature is

outside the scope of the present overview and will not be

discussed further here.

Standard settings and alternate settings of superspace

groups occur for incommensurate composite crystals by means

of the same kinds of coordinate transformations as have been

discussed for modulated crystals. One difference is the

stronger inclination for employing non-standard settings in the

case of composite crystals, because the set M� of reciprocal

basis vectors is preferably chosen to contain reciprocal

basis vectors of the basic structures of the subsystems. For

example, for the case of [PbS]1:18[TiS2] and isostructural

[Ca0:85OH]1:256[CoO2] (van Smaalen et al., 1991; Isobe et al.,

2007), M� has been chosen as

a�1 ¼ a�11 ¼ q21 a�2 ¼ a�12 ¼ a�22

a�3 ¼ a�13 ¼ a�23 a�4 ¼ a�21 ¼ q11:
ð58Þ

This results in a mixed setting of the ð3 þ 1ÞD superspace

group as C02=mð�; 0; 0Þs0 with C0 ¼ ð1
2 ;

1
2 ; 0; 1

2Þ. SSGð3þ dÞD
shows that this is an alternate setting of superspace group No.

12.1.7.4 B2=mð0; 0; �Þs0. Apart from the trivial transformation

of the setting of the BSG, the transformation toward the

standard BSG setting involves the choice of an alternate

modulation wavevector:

a0�4 ¼ q011 ¼ a�1 þ a�4 ¼ a�11 þ a�21 ¼ a�11 þ q11: ð59Þ

The interpretation of a0�4 as a reciprocal basis vector of the

second subsystem is lost in this representation [equation (59)].

Therefore, the mixed setting (i.e. not BSG setting or super-

centered setting) with centering translation ð1
2 ;

1
2 ; 0; 1

2Þ is

preferred over the standard setting in the case of these

composite crystals.

6. Chiral superspace groups

Chiral space groups are space groups that may be the

symmetry of crystals containing chiral molecules. They are of

particular importance in the life sciences, because all proteins

and nucleotides are molecules of this type (Lovelace et al.,

2008).

Chiral space groups are those space groups of which the

point group contains rotations only (Blow, 2002). Chiral

superspace groups are then defined as the superspace groups

for which the three-dimensional point group of the BSG

contains rotations only (Souvignier, 2003). A list of ð3 þ dÞD
superspace groups ðd ¼ 1; 2; 3Þ has been generated with this

criterion and is available on SSGð3þ dÞD. It is noticed that the

fraction of superspace groups that is chiral strongly decreases

on increasing superspace dimension d (Table 5). We did not

find a compelling theoretical reason for this feature. But we do

observe that the number of ways to combine the intrinsic

translations of the BSG with the intrinsic translations along

the additional superspace dimensions, or with supercentering

translations, increases with d. So it appears that the intrinsic

translations of chiral BSG operations are more restricted in

the combinations in which they can participate.

Superspace groups are defined on the basis of equivalence

relations that only allow coordinate transformations that

preserve the handedness of the coordinate axes in three-

dimensional space [detðSRÞ ¼ 1; equation (7)], i.e. that

preserve chirality. This definition leads to pairs of enantio-

morphic superspace groups in cases where the BSG is an

enantiomorphic space group, like the ð3 þ 2ÞD superspace

groups No. 76.2.60.2 P41ð0; 0; �1Þ0ð0; 0; �2Þ0 and No. 78.2.60.2

P43ð0; 0; �1Þ0ð0; 0; �2Þ0. Intrinsic translations along the addi-

tional superspace dimensions do not give rise to enantio-

morphic superspace groups. For example, superspace group

No. 75.2.60.4 P4ð0; 0; �1Þqð0; 0; �2Þ0 is not enantiomorphic

(q stands for the fractional translation 1
4). Instead of being

an enantiomorph, P4ð0; 0; �1Þ �qqð0; 0; �2Þ0 is an alternative

setting of No. 75.2.60.4, and is transformed into the
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Figure 5
Basal plane of the reciprocal lattice of [Sr]x[TiS3]. A�

1 and A�
2 are the

reciprocal basis vectors of the BSG setting of the rhombohedral lattice.
Filled circles represent Bragg reflections and open circles are the
positions of extinct Bragg reflections. a�1 ; a

�
2 are the reciprocal-lattice

vectors of the trigonal unit cell in the standard (primitive) BSG setting.
Extinct Bragg reflections (open circles) only apply to this lattice if the
supercentered setting (H 0 setting) is used.

Table 5
Number of chiral superspace groups in comparison to the number of
superspace groups.

Dimension of space or superspace

Classification 3 3 + 1 3 + 2 3 + 3

Bravais classes 14 24 83 215
Superspace groups 230 775 3338 12584
Chiral superspace groups 65 135 368 1019
Fraction that is chiral 0.283 0.174 0.110 0.081
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standard setting by the choice of a different modulation

wavevector: ð0; 0; � 0
1Þ ¼ ð0; 0;��1Þ [equation (19)].

7. Conclusions

The computational complexity of finding the transformation

between two settings of a ð3 þ dÞD superspace group is

surprisingly high, especially for d ¼ 2; 3. Here an efficient

algorithm is presented, which either establishes two super-

space groups to be different superspace groups or determines

them to be different settings of the same superspace group and

then provides the transformation between these settings. The

algorithm has been implemented as an internet-based utility

called ‘findssg’, which identifies any user-given ð3 þ dÞD
superspace group (d ¼ 1; 2; 3) based on the superspace-group

operators provided, and displays the transformation to the

standard setting of this superspace group in the SSGð3þ dÞD
tables.

The algorithm considers coordinate transformations in

superspace. It is shown that in general such a transformation

corresponds to one, or a combination, of the following three

types of transformations in physical space:

(i) A transformation of the basic structure unit cell.

(ii) Adding any reciprocal-lattice vector of the basic struc-

ture to the modulation wavevector [equation (19)].

(iii) Replacing originally chosen modulation wavevectors by

linear combinations of the same [only for d � 2; equation

(32)].

These transformations are illustrated by the analysis of the

symmetries of a series of compounds with d ¼ 1; 2; 3,

comparing published and standard settings and discussing

the transformations between them. It is argued that non-

standard settings are needed in some cases, while standard

settings of superspace groups are desirable in other cases. A

compilation is provided of standard settings of compounds

with two- and three-dimensional modulations (Tables 2 and 4).

It appears that several ad hoc notations have been used in the

literature for ð3 þ dÞD superspace groups, especially for d ¼ 2

and 3.

For d ¼ 2 superspace groups with trigonal/hexagonal

symmetry, an angle of 120
 between the two modulation

wavevectors is preferred and is the only correct choice for

acentric trigonal cases (Table 3). This is the standard setting

for all relevant Bravais classes in SSGð3þ dÞD, in contrast to

the use of a 60
 angle in most published structures (x4.1.3 and

Table 2).

The problem of superspace-group settings, including the

choice of origin, is subtle. Therefore, we strongly advise

authors to explicitly document for each structure the list of

symmetry operators (or at least the generators) of the super-

space group, along with the explicit form of the modulation

wavevectors as in equation (2). It would also be useful to

include the number and symbol of the standard setting on

SSGð3þ dÞD for each structure, because this will make it easier

to check the equivalences of structures and symmetries in

future studies.

We thank Gloria Borgstahl for pointing out the importance

of chiral superspace groups.
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